metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Sodium dihydrogen tris(cyclopropanecarboxylate)

Kenneth W. Muir,* Alistair Macdonald, Alistair Murray and Allison Macdonald

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland Correspondence e-mail: ken@chem.gla.ac.uk

Received 6 December 1999 Accepted 19 January 2000

The title acid salt, $Na^+ \cdot C_4H_5O_2^- \cdot 2C_4H_6O_2$, contains finite anions in which two cyclopropanoic acid molecules are hydrogen bonded to a cyclopropanoate residue. Each such anion interacts with four different Na⁺ cations.

Comment

The title acid salt, (I), was obtained during an attempt to prepare a conventional acid salt of cyclopropanoic acid. Most monocarboxy acids, HX, form acid salts of the general type MHX_2 , where M is any singly charged cation. However, Speakman (1972) noted in his review of the structures of acid salts that more complex compositions are very occasionally found, citing the examples of KH_2X_3 (HX = acetic acid) and RbH_2X_3 (HX = monochloroacetic acid). Salt (I) belongs to this rare class of acid salts. It appears to be identical to the compound whose cell dimensions were reported by Hwang & Donohue (1971).

The asymmetric unit of (I) consists of one Na⁺ cation and an $XH \cdots X \cdots HX^-$ anion formed by linking two cyclopropanoic acid molecules, HX, to the same cyclopropanoate anion through moderate-to-strong (Jeffrey, 1997) O $-H \cdots O$ hydrogen bonds (see Table 2). The geometries of the three independent cyclopropanoic acid residues are consistent with an ordered arrangement of hydrogen bonds; the deprotonated acid contains C11-O bonds of nearly equal length [1.251 (2) and 1.254 (2) Å], whereas the C21-O and C31-O bonds show the difference in length expected if O22 and O32 are protonated [1.214 (2) and 1.305 (2) Å, and 1.189 (2) and 1.325 (2) Å, respectively]. Disorder of the C32-C34 ring obscures some of its structural details, but the other two cyclopropane units show the expected shortening of the distal

C-C bonds [1.465 (3) and 1.461 (3) Å] relative to the others [1.491 (3)–1.504 (3) Å; Allen, 1980].

The Na⁺ ions lie almost exactly on the 2_1 screw axes (Fig. 1). In consequence, the operations of the screw axes generate nearly linear chains of regularly spaced Na⁺ cations which run parallel to the *b* axis. The distance of 3.402 (2) Å between adjacent Na⁺ ions in these chains is only 0.014 Å greater than

Figure 1

(a) A view of the coordination of the Na⁺ ion showing 20% probability displacement ellipsoids and the atom labelling. Only one component of the disordered C32–C34 ring is displayed. (b) A view of one complete anion, formed by the O11···HO32ⁱ and O12···HO22ⁱⁱ hydrogen bonds, and of the four Na⁺ cations to which it bonds. These cations are part of a chain running parallel to the *b* axis. [Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$; (ii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{3}{2} - z$; (iii) x, -1 + y, z.]

b/2. Each Na⁺ ion is surrounded by a distorted octahedron of O atoms (Table 1). Adjacent octahedra are linked through the O21...O31 edge and also through the η^2 -bridging carboxy group containing O11 and O12. Each Na⁺ ion is bonded to three different $XH \cdots X \cdots HX^-$ anions and each $XH \cdots X \cdots HX^-$ anion donates six electron pairs to four different Na⁺ ions. This highly stable arrangement uses all lone pairs on the unprotonated O atoms O11, O12, O21 and O31, and the hydrogen-bond-donor properties of the O22 and O32 hydroxy groups for inter-residue bonding.

Since Speakman's (1972) review, two MH_2X_3 structures have been fully described and both contain the finite $XH \cdots X \cdots HX^{-}$ anions also found in (I). The cation in KH₂(CH₃CO₂)₃ (Efremov et al., 1986) is eight-coordinate. $NaH_2(CH_3CO_2)_3$ more closely resembles (I), with the finite $XH \cdots X \cdots HX^{-}$ anions stabilizing a chain of octahedrally coordinated Na⁺ cations related by a 4_1 screw axis; the Na-Odistances [2.316 (4)–2.580 (4) Å] are less regular than those in (I) and the $O \cdots O$ distances in the hydrogen bonds [2.509 (4) and 2.503 (4) Å] are somewhat shorter (Perrotti & Tazzoli, 1981). Interestingly, acetic acid also forms a regular sodium salt, Na(CH₃CO₂), which crystallizes as a trihydrate (Doxsee & Stevens, 1990) and in two anhydrous forms (Hsu & Nordman, 1983), and a regular acid salt NaH X_2 (Barrow *et al.*, 1975); all of these have been structurally characterized. Although an analysis of potassium dihydrogen tris(o-chlorobenzoate) was successful (Golic & Speakman, 1975), no structural details have been published.

Experimental

Crystals were obtained from an aqueous solution of cyclopropanoic acid and sodium hydroxide in a 2:1 molar ratio. Analysis found: C 50.8, H 6.05%; calculated for $C_{12}H_{17}NaO_6$: C 51.4, H 6.07%. IR (KBr discs): 3439, 3081, 3022, 2860, 2480, 1905, 1692, 1522, 1430, 1362, 1294, 1228 cm⁻¹.

Crystal data

$Na^{+} \cdot C_{4}H_{5}O_{2}^{-} \cdot 2C_{4}H_{6}O_{2}$	D_m measured by flotation in
$M_r = 280.25$	heptane/1,2-dichloroethane
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 12.3629(7)Å	Cell parameters from 25
b = 6.7768 (4) Å	reflections
c = 16.9374 (12) Å	$\theta = 18.3 - 23.8^{\circ}$
$\beta = 101.151 \ (6)^{\circ}$	$\mu = 0.132 \text{ mm}^{-1}$
V = 1392.24 (15) Å ³	T = 294 (2) K
Z = 4	Needle, colourless
$D_x = 1.337 \text{ Mg m}^{-3}$	$0.49\times0.21\times0.11~\rm{mm}$

Table 1

Selected geometric parameters (Å, °).

Na1—O12 ⁱ Na1—O11 Na1—O21	2.3429 (14) 2.3590 (14) 2.3939 (13)	Na1—O21 ⁱ Na1—O31 Na1—O31 ⁱ	2.3972 (13) 2.5162 (18) 2.534 (2)
O12 ⁱ -Na1-O11 O21-Na1-O21 ⁱ	160.70 (6) 171.08 (5)	O31-Na1-O31 ⁱ	169.29 (6)
Symmetry code: (i) $\frac{1}{2}$ –	$x, \frac{1}{2} + y, \frac{3}{2} - z.$		

Data	collection	
Duiu	conection	

Enraf-Nonius CAD-4 diffract- ometer $\omega/2\theta$ scans 4477 measured reflections 3357 independent reflections 2175 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$	$h = -15 \rightarrow 2$ $k = -8 \rightarrow 1$ $l = -23 \rightarrow 21$ 3 standard reflections every 184 reflections frequency: 120 min intensity decay: none
$\theta_{\rm max} = 27^{\circ}$	
Refinement	
Refinement on F^2 R(F) = 0.042	$w = 1/[\sigma^2(F_o^2) + (0.0556P)^2 + 0.352P]$
$wR(F^2) = 0.125$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.017	$(\Delta/\sigma)_{\rm max} = 0.001$
335/ reflections	$\Delta \rho_{\text{max}} = 0.26 \text{ e A}^{-3}$
207 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e A}^{-1}$
H atoms treated by a mixture of	
independent and constrained	
retinement	

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O22{-}H2{\cdot}{\cdot}{\cdot}O12^{i}\\ O32{-}H3{\cdot}{\cdot}{\cdot}O11^{ii} \end{array}$	0.93 (3)	1.62 (3)	2.5475 (18)	171 (3)
	0.86 (3)	1.72 (3)	2.567 (2)	167 (3)

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$; (ii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{3}{2} - z$.

The carboxy H atoms, H2 and H3, were located in a ΔF synthesis and then refined freely. Other H atoms were positioned using stereochemical criteria and were then constrained to ride on their parent C atoms. The C32–C34 cyclopropane ring is disordered over two sites with equal probability and the parameters of the disordered atoms are therefore subject to some systematic error.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WINGX* (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1395). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. (1980). Acta Cryst. B36, 81-96.
- Barrow, M. J., Currie, M., Muir, K. W., Speakman, J. C. & White, D. N. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 15–18.
- Doxsee, K. M. & Stevens, R. C. (1990). J. Incl. Phenom. 9, 327-330.
- Efremov, V. A., Endeladze, N. O., Chubinidze, A. D. & Trunov, V. K. (1986). Dokl. Akad. Nauk SSSR, 286, 352–355.
- Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Golic, L. & Speakman, J. C. (1975). Izv. Jug. Cent. Kristallogr. Ser. A, 10, 72.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Hsu, L.-Y. & Nordman, C. E. (1983). Acta Cryst. C39, 690-694.
- Hwang, K. J. & Donohue, J. (1971). Am. Crystallogr. Assoc. Abstr. Pap. (Winter), p. 35.
- Jeffrey, G. A. (1997). In *An Introduction to Hydrogen Bonding*. New York: Oxford University Press.

Perrotti, A. & Tazzoli, V. (1981). J. Chem. Soc. Dalton Trans. pp. 1768–1769. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Speakman, J. C. (1972). Struct. Bonding (Berlin), 12, 141-199.